
Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

Evy, a New Approach to Introductory
Programming
Julia Ogris, MSc BBA

Abstract — Introductory programming faces a significant challenge: While
block-based languages like Scratch provide an accessible entry point, the ultimate
goal of programming education remains mastery of text-based languages. This creates
a gap for learners transitioning from the intuitive visuals of blocks to the abstract
syntax and, in many cases, the advanced concepts of modern, conventional
programming languages. Evy addresses this gap with a novel approach to introductory
programming.
At its core, Evy is a simple, text-based programming language designed for clarity,

readability and learnability. With fewer special characters and advanced concepts than
most conventional programming languages, it draws inspiration from
beginner-friendly languages of the past like Basic and Pascal but also from modern
block-based environments. Evy's minimalist syntax and small set of built-in functions
reduce cognitive load and promote memorability, allowing learners to more readily
access core computational and algorithmic thinking skills.
Beyond functionality, Evy recognizes the importance of engagement. Its small yet

powerful set of built-in functions enable the creation of visually appealing graphics,
interactive animations, and even games, fostering a stimulating learning environment
that encourages independent exploration and experimentation. Accessibility remains
paramount. Evy's web-based learning playground offers immediate access with no
setup required, allowing exploration of varied examples and instant coding for
beginners. However, for those seeking a deeper dive, Evy also integrates with
preferred editors, terminals, and IDEs, accommodating diverse learning preferences.
Index Terms— computer science education, introductory programming, novice

programmers, programming, programming environment, programming languages

I. INTRODUCTION
The landscape of introductory programming languages often lacks options tailored

to the unique needs of beginners, especially children and teenagers. While
block-based languages like Scratch or Microsoft's MakeCode offer intuitive
environments [3, 4, 22] , transitioning to text-based languages like Python can be
challenging [1, 2, 11, 24, 25, 26]. Conversely, conventional introductory languages
like Python, C, Java, or Javascript often overwhelm beginners with complex syntax
and advanced concepts [13 11, 17, 23]. This paper introduces Evy (https://evy.dev), a
novel educational programming language designed to bridge this gap.
In the following we will explore the strength and weakness of various introductory

programming languages, historical and present. We will also analyze the benefits and
disadvantages of block-based versus text-based languages. Finally we will introduce
the Evy language and show how it draws upon the strengths of various approaches to
tackle the challenges of novice programming education.

1

https://evy.dev/evy-2401.pdf
https://evy.dev


Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

II. OBJECTIVES

Evy is developed for STEM educators, researchers and most importantly, the next
generation of coders, looking to bridge the gap between beginner-friendly
block-based languages and powerful, conventional languages. It serves as a stepping
stone, offering a minimal text-based language with a simple syntax and a small yet
powerful set of built-in functions. Specifically designed for learnability, Evy
prioritizes engaging experiences alongside core programming concepts, emphasizing
computational thinking and "real" coding in a fun and accessible way.
While Evy the language has already been fully implemented, the project's

aspirations extend further. We are actively working towards a well-researched
learning platform and course framework that tackles head-on the shortcomings of
conventional text-based programming language teaching. For this purpose, the project
and its creators are seeking a funded research home, ideally at a university or research
lab with expertise in educational technology.

III. APPROACH

This section explores the evolution of introductory programming, examining the
merits and drawbacks of prominent approaches. Finally, it introduces Evy, a novel
introductory language whose syntax, built-in functions, and environment are carefully
designed for learnability, harnessing the strengths of existing approaches.

A. Historical Background
The difficulty of learning to program casts a long shadow, evidenced by high

drop-out rates in introductory university courses (CS1). Some argue that
programming is inherently challenging [17, 23], while others point to decades of
successful instruction, even at the elementary level [13, 14, 16]. So, why the
disparity? Why does programming persist as a perceived hurdle?
Luxton-Reilly [13] compellingly argues that the difficulty lies not in programming

itself, but in flawed teaching methods and unrealistic expectations. We demand rapid
assimilation of complex programming concepts while simultaneously expecting
students to navigate intricate systems and tools. Crucially, we neglect to explicitly
teach or assess these essential skills. Unrealistic expectations, a heavy workload, and
the rapid ramp-up in complexity of programming concepts can lead to plagiarism,
dropouts, and discourage students. This impact is particularly pronounced for those
without prior programming experience, disproportionately affecting women and
diversity in general [13].
Anecdotally, several text-based languages of the past had a narrower focus, with

some explicitly designed for learning and teaching. Many older programmers fondly
recall starting with Basic, which, despite limitations, offered a straightforward
approach tailored for newcomers – even its name, Beginner's All-purpose Symbolic
Instruction Code, was a testament to its purpose. Similarly, Pascal, with its stated
design goal of being a "teaching" language [29], and its clear syntax, facilitated a
smoother learning experience.
In a comprehensive analysis of introductory computer science courses, Sobral

investigates the evolution of introductory programming languages by leveraging the
extensive database of research papers available through Google Scholar [18]. The
study examines publications mentioning "CS1," "introductory programming," and
"novice programming" across various programming languages, spanning the years
1989 to 2018. Sobral's findings reveal a growing interest in the novice programming

2

https://evy.dev/evy-2401.pdf


Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

domain, with C, Java, and Python dominating the last two decades. Conversely,
Pascal and Basic experienced a decline in prevalence, while JavaScript and Python
demonstrate a notable upward trajectory[18], reflecting broader industry shifts [19].
Figure 1 presents a simplified depiction of these findings according to Sobral [18].

Figure 1: Google scholar articles on introductory programming by programming
language mentioned over all introductory programming articles

B. Literature Review of Contemporary Approaches
Emerging in the early 2000s, block-based coding introduced a novel paradigm for

teaching programming. This approach utilizes a visual building block metaphor,
where commands are presented in logically organized categories, guiding learners on
how and where to use them [3]. This eliminates the risk of syntax errors, making
computer science more accessible and understandable for novice programmers [8, 20,
24]. The rise of graphical interfaces, the interactive potential of the web, and growing
international mandates for coding education in schools all contributed to the
popularity of block-based coding.
From Alice's pioneering role in the late 1990s to Scratch's thriving online

community (see figure 2), several block-based languages have shaped introductory
programming, including:

● Alice: Emerged in the late 1990s at Carnegie Mellon (https://www.alice.org/),
evolved from a VR prototyping tool into a versatile block-based environment
fostering creativity and storytelling [6, 22].

● Scratch: Released in 2007 by MIT (https://scratch.mit.edu/), Scratch
revolutionized novice programming with its intuitive interface, engaging game
and story creation features, and vibrant online community. It also offers
Scratch Jr. for younger learners, solidifying its legacy as a leading platform
[22].

● Snap!: Released in 2011 by UC Berkeley (https://snap.berkeley.edu/) Snap!
shares similarities with Scratch but delves deeper with its expanded block
library, first-class procedures, and list operations, catering to slightly more
advanced learners [9].

3

https://evy.dev/evy-2401.pdf
https://www.alice.org/
https://scratch.mit.edu/
https://snap.berkeley.edu/


Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

● MakeCode: Released in 2017 by Microsoft (https://makecode.com),
MakeCode empowers novices to explore robotics and microcontroller
programming. [4]

● Blockly: Released in 2011 by Google (https://developers.google.com/blockly)
Blockly is a block-based language and library that transpiles to Python,
JavaScript and other modern text-based languages. It now serves as the
backbone for Scratch and MakeCode. [21].

Figure 2: A side-by-side comparison of programming environments:
Scratch (left) and MakeCode with Adafruit Circuit Playground Microcontroller (right).

While block-based languages provide a user-friendly entry point for novice
programmers, text-based programming remains the dominant approach in universities,
many high schools and some primary schools. Its emphasis on syntax and
fundamental programming principles prepares students for the challenges of advanced
coding and equips them with the skills needed to tackle real-world projects [19, 30].
Figure 3 illustrates the implementation of the Sieve of Eratosthenes, a classic
algorithm for prime number computation, in two of the most popular text-based
introductory languages: Python and Java. These languages, along with JavaScript and
C, also hold significant weight in open source development and industry demand [19].
Among them, Python stands out for its perceived ease of use and growing popularity.
In fact, it is commonly used as an introductory language across Chinese, British,
American and Australian high schools [7, 15, 19].

4

https://evy.dev/evy-2401.pdf
https://makecode.com
https://developers.google.com/blockly


Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

Figure 3: Text-based programming: Python (left) and Java (right)

C. Analysis
Text-based languages
Before diving into contemporary trends, let's take a quick look back at the historical

landscape of introductory programming languages. Procedural languages like Pascal
and C, alongside the early, unstructured languages like Basic, dominated the 80s, 90s,
and early 2000s. Following their reign, Java rose to prominence as object-oriented
programming gained traction, while Python and JavaScript emerged as versatile
languages combining multiple paradigms. Notably, C has retained its dominance,
likely due to its unwavering role in systems and embedded programming, where its
performance and efficiency remain crucial.
While the dominant paradigms in both introductory programming and industry have

shifted away from procedural languages, some research suggests a potential
pedagogical advantage for these historically prevalent approaches. Notably, a study by
Wiedenbeck et al [28] revealed that novice learners encountered significant difficulty
with object-oriented (OO) programs compared to functionally equivalent procedural
versions. While OO programming builds upon the fundamental concepts mastered in
procedural languages, its additional features pose an initial hurdle for novice learners.

Following, a selection of dominant introductory programming languages is briefly
reviewed:

● C (1972): This pioneer, designed by Dennis Ritchie, laid the foundation for
modern languages with its procedural approach and static typing. Its influence
in systems and embedded programming remains significant.

● Java (1995): James Gosling's object-oriented language transformed enterprise
development with debatably robust features and platform independence.
Today, it plays a major role in web applications and Android development.

● JavaScript (1995): Brendan Eich's creation transformed the web. Its
multi-paradigm nature and dynamic typing make it essential for interactive
web experiences and increasingly relevant for server-side programming.

● Python (1991): Guido van Rossum's brainchild rose to prominence with its
arguably beginner-friendly syntax and versatility. Widely used in data science
and machine learning, its popularity continues to soar.

These four prominent languages, all over 25 years old, have enjoyed the benefit of
time to mature, refine, and accumulate extensive documentation and learning
materials. However, they also carry the weight of their history, with legacy features
and complexities that can challenge newcomers.
Python, one of the most popular modern programming languages, is often chosen as

an introductory language due to its apparent simplicity and widespread popularity [5,
10]. While Python's syntax indeed boasts elegance and directness, it also enjoys the
advantage of a more consistent "idiomatic" coding style to languages like JavaScript
or C. However, this elegant simplicity can be deceptive.
Research by Johnson et al [10] delves into the difficulties novices face with

Python's operator overloading. The + operator, for example, can add integers or floats,
concatenate strings, and extend lists, adding layers of complexity that may not be
evident at first glance. Moreover, many relatively complex concepts lurk within
Python's depths, potentially baffling beginners. These include meta-programming

5

https://evy.dev/evy-2401.pdf


Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

with decorators, higher-order functions (passing functions as arguments or return
values), lambdas, closures, list and dictionary comprehensions, generators, coroutines,
default parameters, ternary operators, type hints, and object-oriented features.
Even some essential Python features pose challenges to beginners. One such

example is the indentation-based syntax. Whitespace usage often proves tricky for
absolute novices: "How many spaces should I use? Is this a tab or a space? Does it
even matter?" Unlike Python, most programming languages like JavaScript, Java, and
C are whitespace-insensitive, meaning whitespace is purely for readability and
handled automatically by code formatters. In Python, however, indentation dictates
the program's structure, making incorrect usage akin to a syntax error.
Further compounding the challenges for novices is Python's dynamic type system.

While seemingly straightforward, this feature harbors hidden complexities. For
example, subtracting variables with numeric values is intuitive, but attempting the
same with a string, even one convertible to a number, can lead to cryptic errors.
Adding to the confusion, a variable's type can dynamically change depending on the
program's execution path, introducing subtle, hard-to-trace bugs for inexperienced
users.
Interestingly, both whitespace sensitivity and dynamic typing contribute to Python's

allure of simplicity and elegance. They eliminate the need for explicit block closures
with "end" statements or cumbersome curly braces, as well as the burden of constant
type declarations. This perceived ease, however, comes at the cost of potential pitfalls
for novices grappling with these implicit complexities. It's important to note that
similar arguments can be made regarding the initial hurdles presented by other
dominant novice languages like JavaScript, C, or Java, each with their own
idiosyncrasies.

Block-based vs text-based languages
In a study comparing two introductory programming interfaces, Weintrop et al [25]

tracked two matched classes at the same school. Both embarked on a 5-week
curriculum, with one group using a block-based interface and the other a text-based
version. Comprehensive assessments revealed that while both groups improved, the
block-based interface fostered greater learning gains and deeper interest in future
computer science endeavors. Interestingly, the text-based group viewed their
experience as more professional and effective for skill development. This suggests
that block-based interfaces may be ideal for initial learning and igniting interest, while
text-based tools cultivate advanced skills and a professional perspective.
Weintrop et al [24] further highlight potential drawbacks to block-based

environments. Students immersed in these frameworks may perceive them as less
powerful and lacking in features compared to their text-based counterparts. This
perception of "inauthenticity" could stem from a sense of not engaging with the
deeper intricacies of "real", text-based code. Additionally, as project complexity
grows, the inherent drag-and-drop interface can become increasingly cumbersome,
leading to cluttered codebases that are more difficult to read and understand than their
text-based equivalents. This negates the initial readability advantage block-based
formats offer for simple programs to absolute novices.
While the engaging nature of block-based coding makes it an attractive option,

effectively conveying foundational data structures and algorithms, like linked lists,
binary trees, searching, sorting, and the aforementioned prime number algorithm,
presents a significant challenge within a block-based framework. This necessitates the
transition to text-based coding for a deeper understanding of these concepts.

6

https://evy.dev/evy-2401.pdf


Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

Transitioning
The dominant strategy for bridging the gap between block-based and text-based

coding leverages preview modes. These, as Kölling et al [11] note, can take the form
of software tools or readily accessible reference sheets, offering learners a familiar
block-based visual representation alongside their corresponding textual code.
Additionally, more recent hybrid systems, exemplified by Microsoft's MakeCode,
allow for dynamic switching between code and block views [12]. However, this
fluidity stumbles when encountering text-based features lacking a corresponding
block equivalent.
Regardless of specific systems, certain core challenges confront learners

transitioning from block-based to text-based programming [11, 27]:
● Remembering Commands: Block-based systems function as a readily

accessible repository of commands, presented in a visually intuitive catalog.
This approach empowers novices to explore the available functionality, refresh
fading knowledge, and even spark innovative ideas by discovering new
possibilities. In addition, text-based systems offer a wider range of functions
than blocks exist in block-based environments, requiring familiarization with a
larger command set.

● Readability: Readability remains a hurdle, as novices often find features like
visually intuitive scope representation through bracketed blocks easier to grasp
than textual equivalents with curly braces.

● Precise Syntax: Mastering text-based systems demands two levels of recall:
the keyword and its exact use, including punctuation. Knowing a "for-loop"
exists (and why) isn't enough; you need the keyword, comma placement,
semicolons, and bracket dance all memorized. This layer of syntactic
complexity adds another hurdle for new programmers, beyond simply
remembering the commands themselves.

● Typing: Text entry via keyboard poses a significant challenge to the untrained
novice, especially kids who have little to no experience with touch typing

● Data Types: While many block-based systems use a limited set of built-in
types, allowing successful program creation without deep data type
understanding, most text-based languages offer greater flexibility. They
typically allow for custom types and specialized types like "datetime"
requiring more nuanced comprehension. Even with dynamically typed
languages, where types are implicit, users benefit from some data type
familiarity to avoid potential errors.

● Whitespace: Indentation and spacing are done automatically in block-based
systems by the shape and nesting of blocks. In text-based programming
languages, it is often done manually. This is especially problematic for
languages where whitespace is part of the syntax, such as Python.

D. Evy: A Simple, Engaging Text-based Programming Language
Evy is a simple procedural language with a limited static type system, bridging the

gap for both students new to text-based programming and those transitioning from
block-based environments. It retains the ease-of-use and engagement of block-based
coding, letting students build and share animations and games online with zero setup
(see Figure 4).

7

https://evy.dev/evy-2401.pdf


Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

Figure 4: Evy's web-based playground at https://play.evy.dev

But Evy's power goes beyond fun: it equips students with enough syntax to learn
foundational algorithms and data structures, laying the groundwork for success in CS
and Software Engineering degrees. Compatible with diverse editors and
environments, Evy adapts to your learning preferences as you advance.
Evy's syntax is purposefully minimalist, addressing the fact that especially young

novice students do not yet have established touch typing skills and grasp shorter terms
more easily. Whitespace in Evy is optional and only serves readability, but
auto-indentation via code-formatter is built into Evy's web-based playground.
A hello-world program in Evy is as simple as:
print "Hello, world!"

Evy's static type system does not hide types, but makes it easy to declare typed
variables through type inference. n �� 5 for instance declares the variable n of
type number. There are only three basic types in Evy: num , string , bool .
There are two composite types: arrays [] and maps {} , and one dynamic type

called any . Evy does not allow for custom type declarations via structs or classes. It
completely lacks any OO and functional programming features and only allows for
top-level function definitions. It caters to user interaction by allowing the definition of
a predefined set of event handlers, with the on keyword, for example:
on down x:num y:num

print x y
end

The code above prints the x and y coordinates on every pointer down event, mouse or
touch.

if statements have optional else if and else branches, but there is no
"case" statement. There is a single continuation-condition while loop and a for
loop that ranges over either arrays, maps or number ranges.

8

https://evy.dev/evy-2401.pdf
https://play.evy.dev


Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

Evy has a small yet powerful set of builtin functions:
● Input and Output: print, read, cls, printf
● Types: len, typeof
● Map: has, del
● Program control: sleep, exit, panic
● Conversion: str2num, str2bool
● Errors: panic, err
● String: sprint, sprintf, join, split, upper, lower, index, startswith, endswith,

trim, replace
● Random: rand, rand1
● Math: min, max, floor, ceil, round, pow, log, sqrt, sin, cos, atan2
● Graphics: move, line, rect, circle, color, width, clear, grid, gridn, poly, ellipse,

stroke, fill, dash, linecap, text, font
● Event Handlers: key, down, up, move, animate, input

Evy outputs drawing commands to an area in the top right corner of the screen
whose positions are defined by a Cartesian coordinate system, ranging from (0, 0) at
the bottom-left to (100, 100) at the top-right. Traditional computer graphics often
have an inverted y-axis with (0, 0) at the top-left. In contrast, Evy's coordinate system
aligns with math classes, placing (0, 0) at the bottom-left. This consistency minimizes
confusion for younger learners. For further details, see the Evy language specification,
built-in documentation, and syntax by example (https://docs.evy.dev).
Figure 5 shows the Evy source code and a screenshot of a simple animation of a

shrinking purple dot. Initially, we set the drawing pen color to purple and draw a
circle with radius 30 at the center of the canvas (50,50). Then, we use the "on
animate" event handler to update every frame, drawing a slightly smaller circle after
clearing the canvas.

Figure 5: A Simple Animation in Evy - The Shrinking Purple Dot.
Limitations
While Evy tackles many common hurdles for novice programmers, it still shares

some inherent challenges. Syntax errors can occur, and case sensitivity and special
characters demand precision and focus during text input. Evy also has room for
improvement in readability of error messages and performance. Its creators are
actively working on refining these aspects. Future plans include enhancing error
messages to be clear and actionable, as well as optimizing execution performance for
even smoother user experiences.

9

https://evy.dev/evy-2401.pdf
https://docs.evy.dev


Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

IV. CONCLUSION

Novice programmers routinely struggle to learn programming. Block-based
environments, while easy-to-use, lack the power and authenticity needed for industry
experience or foundational algorithms. Conversely, conventional text-based languages
daunt many, especially younger beginners, with cryptic special characters and
advanced concepts. Further research should be conducted on easing the transition
from block-based to text-based coding and lowering the barrier to entry for learning
text-based languages.
Evy exemplifies a text-based approach that bridges the gap between block-based

and text-based methodologies, drawing on the strengths of both:

● Minimizing cognitive load: Evy embraces a minimalist syntax with fewer
special characters and advanced concepts than most programming languages.
This reduced complexity paves the way for faster grasp and internalization of
its syntactic mechanics, thereby easing novices' path to algorithmic thinking.

● Clarity and memorability: Evy uses natural language keywords and has a
small set of built-in functions that are easy to understand and remember, yet
powerful enough for user interaction, games, and animations. These features
empower engaging experiences, which in turn encourage efficient learning.

● Focusing on Engagement: Evy prioritizes sparking immediate excitement for
beginners. With visually appealing graphics, interactive animations, and even
game creation, it fuels motivation and makes learning fun through instant
gratification. This goal is further supported by Evy's zero-setup approach: go
to the website, look at samples, and code away!

● Learning from the past and present: Evy draws inspiration from both the
accessibility of legacy languages like Basic and Pascal and the best practices
of modern languages. Its minimalist syntax reflects past languages, while
features like automated formatting integrate modern advancements.
Additionally, Evy's online playground and example-rich documentation mirror
the readily available resources found in contemporary platforms.

● Seamless transition to advanced languages:With a firm grasp of
fundamentals in Evy, like algorithmic thinking and core data structures,
transitioning to Python, Javascript or other modern conventional programming
language becomes considerably easier compared to starting from scratch or
solely relying on block-based coding.

● Making sharing easy: Evy fosters a sense of community among young
programmers by enabling instant sharing of creations via unique URLs. This
promotes collaboration, feedback, and a sense of accomplishment, making the
learning experience even more rewarding.

While the Evy language itself is complete, our ambition extends beyond code. We're
actively developing a research-backed learning platform and course framework to
address shortcomings of text-based programming education, eliminating the barriers
that often deter beginners. To achieve this vision, we seek a supportive home for the
Evy project.
Ideally, we'd partner with a university or research lab with expertise in educational

technology. However, we welcome all forms of support, whether you're an educator
passionate about outreach, a developer interested in contributing to our open-source
platform, or a sponsor eager to invest in the future of programming education.

10

https://evy.dev/evy-2401.pdf


Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

REFERENCES

[1] Altadmri, A., & Brown, N. C. (2015, February). 37 million compilations:
Investigating novice programming mistakes in large-scale student data. In
Proceedings of the 46th ACM technical symposium on computer science
education (pp. 522-527).

[2] Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From scratch to “real”
programming. ACM Transactions on Computing Education (TOCE), 14(4), 1-15.

[3] Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F. (2017). Learnable
programming: blocks and beyond. Communications of the ACM, 60(6), 72-80.

[4] Ball, T., Chatra, A., de Halleux, P., Hodges, S., Moskal, M., & Russell, J. (2019,
October). Microsoft MakeCode: embedded programming for education, in blocks
and TypeScript. In Proceedings of the 2019 ACM SIGPLAN Symposium on
SPLASH-E (pp. 7-12).

[5] Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and
learning of computer programming: A literature review. Contemporary
Educational Technology, 12(2), ep272.

[6] Cooper, S. (2010). The design of Alice. ACM Transactions on Computing
Education (TOCE), 10(4), 1-16.

[7] Chow, S., Yacef, K., Koprinska, I., & Curran, J. (2017, July). Automated
data-driven hints for computer programming students. In Adjunct publication of
the 25th conference on user modeling, adaptation and personalization (pp. 5-10).

[8] Grover, S., & Basu, S. (2017, March). Measuring student learning in introductory
block-based programming: Examining misconceptions of loops, variables, and
boolean logic. In Proceedings of the 2017 ACM SIGCSE technical symposium on
computer science education (pp. 267-272).

[9] Harvey, B. (2019). Why do we have to learn this baby language?.
[10] Johnson, F., McQuistin, S., & O'Donnell, J. (2020, January). Analysis of

student misconceptions using Python as an introductory programming language.
In Proceedings of the 4th Conference on Computing Education Practice (pp. 1-4).

[11] Kölling, M., Brown, N. C., & Altadmri, A. (2015, November). Frame-based
editing: Easing the transition from blocks to text-based programming. In
Proceedings of the Workshop in Primary and Secondary Computing Education
(pp. 29-38).

[12] Lin, Y., & Weintrop, D. (2021). The landscape of Block-based programming:
Characteristics of block-based environments and how they support the transition
to text-based programming. Journal of Computer Languages, 67, 101075.

[13] Luxton-Reilly, A. (2016, July). Learning to program is easy. In Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer Science
Education (pp. 284-289).

[14] Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010).
The scratch programming language and environment. ACM Transactions on
Computing Education (TOCE), 10(4), 1-15.

[15] Miskin, H., & Gopalan, A. (2017). Skramble: An embeddable python
programming environment for use in learning systems. In Computers Supported
Education: 8th International Conference, CSEDU 2016, Rome, Italy, April 21-23,
2016, Revised Selected Papers 8 (pp. 193-213). Springer International Publishing.

[16] Papert, S. A. (2020). Mindstorms: Children, computers, and powerful ideas.
Basic books.

11

https://evy.dev/evy-2401.pdf


Evy, a New Approach to Introductory Programming - https://evy.dev/evy-2401.pdf

[17] Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching
programming: A review and discussion. Computer science education, 13(2),
137-172.

[18] Sobral, S. R. (2019). 30 Years of CS1: Programming languages evolution.
[19] Sun, D., Looi, C. K., Li, Y., Zhu, C., Zhu, C., & Cheng, M. (2024).

Block-based versus text-based programming: a comparison of learners’
programming behaviors, computational thinking skills and attitudes toward
programming. Educational technology research and development, 1-23.

[20] Tempel, M. (2013). Blocks programming. CsTA Voice, 9(1), 3-4.
[21] Trower, J., & Gray, J. (2015, February). Creating new languages in Blockly:

Two case studies in media computation and robotics. In Proceedings of the 46th
ACM Technical Symposium on Computer Science Education (pp. 677-677).

[22] Utting, I., Cooper, S., Kölling, M., Maloney, J., & Resnick, M. (2010). Alice,
greenfoot, and scratch--a discussion. ACM Transactions on Computing Education
(TOCE), 10(4), 1-11.

[23] Watson, C., & Li, F. W. (2014, June). Failure rates in introductory
programming revisited. In Proceedings of the 2014 conference on Innovation &
technology in computer science education (pp. 39-44).

[24] Weintrop, D., & Wilensky, U. (2015, June). To block or not to block, that is
the question: students' perceptions of blocks-based programming. In Proceedings
of the 14th international conference on interaction design and children (pp.
199-208).

[25] Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based
programming in high school computer science classrooms. ACM Transactions on
Computing Education (TOCE), 18(1), 1-25.

[26] Weintrop, D., & Wilensky, U. (2019). Transitioning from introductory
block-based and text-based environments to professional programming languages
in high school computer science classrooms. Computers & Education, 142,
103646.

[27] Weintrop, D. (2021). The role of block-based programming in computer
science education. Understanding computing education, 1, 71-78.

[28] Wiedenbeck, S., & Ramalingam, V. (1999). Novice comprehension of small
programs written in the procedural and object-oriented styles. International
Journal of Human-Computer Studies, 51(1), 71-87.

[29] Wirth, N. (2000). The Development of Procedural Programming Languages:
Personal Contributions and Perspectives. Proceedings of the Joint Modular
Languages Conference on Modular Programming Languages. Springer-Verlag,
Berlin, Heidelberg, 1–10.

[30] Yücel, Y., & Rızvanoğlu, K. (2019). Battling gender stereotypes: A user study
of a code-learning game,“Code Combat,” with middle school children. Computers
in Human Behavior, 99, 352-365.

Julia Ogris has over 20 years of industry experience building software at
innovative startups and established corporations including Google and ANZ Bank.
She noticed a gap in beginner-friendly programming tools. Passionate about inspiring
the next generation to code, she collaborated with her young daughters to create Evy,
a bridge between intuitive block-based environments and powerful real-world
languages (https://evy.dev).

12

https://evy.dev/evy-2401.pdf
https://evy.dev

